
10 REM —DEMONSTRRTION" 
20 PRINT "FONCTIONNEMENT" 
25 LET IP=0 
30 LET AU=9£i52 
AM LET N=e= 
50 G05U6 AU 
70 PRINT 
Se PRINT ”RESULTAT 1ER UEER'' 
85 REM 1234567 
90 FOR 1=1 TO 50 
95 NEXT I 
100 LET N=210 
110 GOSUB RU 
120 PRINT 
130 PRINT "RESULTRT thEME USER- 
140 GOTO 300 
210 REM 1234567 
220 REM 1234567 
300 LET N=220 
310 GOSUB RU 
320 PRINT 
330 PRINT "RESULTRT 3EME USER" 
340 STOP 

Fig. I. — Liste du programme de démonstration. 

Frtt\ICI TCJIA i4E MENT 
*0 
RESULT AT 1ER Uf=•ER 

RESULTFiT 2EME USER 

R.5SULTF4T :'sEMF USER 

Fig. 2. — Exécution des trois routines appelées via RALP. 

Ralp, un utilitaire 

pour le ZX 81 

Le stockage des routines en langage machine dans des 
instructions REM du Basic est pratique courante sur un 
ZX 81. Cependant, pour y accéder, il faut en connaître 
l'adresse mémoire, ce qui limite l'emploi de cette mé-
thode. Ralp supprime cette contrainte en autorisant 
l'accès à une routine par le numéro de la ligne REM la 
contenant, et ce, pour l'implanter, la modifier ou l'exé-
cuter. 

RALP 

de P. 
DEMEI. 

Permet l'adressage de sous
-

programmes « 
USER » 

inclus dans 

des lignes REM sans en connaître 

l'implantation mémoire. 

L.angage : Basic 
+ code Z 80 

Ordinateur : 
ZX 81 (16 

K-octets) 

Ecrire des routines en lan-
gage machine s'avère impératif 
pour accélérer l'exécution d'un 
programme Basic. L'instruction 
REM est souvent employée 
pour leur stockage. Sur un 
ZX 81, c'est d'ailleurs le pro-
cédé le plus pratique. Cepen-
dant, pour y faire référence, il 
faut connaître et exprimer dans 
le programme l'adresse de cette 
routine. Cette contrainte en li-
mite pratiquement l'implanta-
tion à la première ou à la der-
nière ligne d'un programme, à 
moins de se livrer à de fasti-
dieux calculs. En effet, l'accès, 
pour exécution, est facile dans 
le premier cas (USER 16514), 
et encore acceptable dans le se-
cond (USER [PEEK 16396 + 
256 * PEEK 16397 — Long. 
routine]) 

Le sous-programme « Ralp » 
permet d'appeler une routine en 
langage machine par le numéro 
de ligne du programme Basic 
qui la contient, exactement 
comme pour un sous-pro-
gramme Basic. 

Les avantages de ce procédé 
sont nombreux. Tout d'abord, il 
est inutile de connaître explici-
tement l'adresse de la routine à 
exécuter, celle-ci étant calculée 
par le sous-programme. En-
suite, il est possible d'introduire 
les routines où l'on veut au 
cours de l'implantation (ou des 
modifications) du programme 
principal. 

Notons aussi qu'il n'est pas 
nécessaire de retoucher les 
adresses d'accès aux routines 
(dans la mesure où celles-ci ne 
changent pas de numéro de 
ligne) en cas de modification du 
programme principal. Atten-
tion, cependant : les routines 
contenues dans les instructions 
REM peuvent adresser directe-
ment un des octets les consti-
tuant ou être adressées par 
d'autres routines, ou même des 

PEEK depuis le programme 
Basic. Dans ces cas, toute mo-
dification du programme dépla-
cera les routines en mémoire et, 
par là-même, l'adresse des rou-
tines. 

Ce sous-programme utilise 
essentiellement une routine 
contenue dans la ROM du 
ZX 81, à l'adresse 2520 
(09D8h). Son rôle est de re-
chercher l'adresse-mémoire 
d'un numéro de ligne du pro-
gramme Basic. 

Mode d'emploi 
Le sous-programme « Ralp » 

doit être placé tout à fait à la 
fin du programme principal. 

Il peut être sauvegardé 
(label : « Ralp ») et chargé 
avant l'introduction de tout 
programme nouveau devant 
contenir des routines en lan-
gage machine. 

Le programme de démons-
tration de la figure 1 utilise 
trois fois la routine « Ralp » . Il 
va nous permettre d'en expli-
quer le fonctionnement. L'objet 
de ce programme est de faire 
exécuter les routines en code 
machine, implantées dans des 
instructions REM, aux lignes 
(choisies au hasard) 85, 210 et 
220. 11 consiste en un affichage 
de trois groupes de deux carac-
tères, avec identification de la 
routine exécutée. Nous en véri-
fions l'exécution à l'écran (cf. 
fig. 2). 

Programme 
de démonstration 

Les lignes 25 et 30 initiali-
sent les variables d'exécution 
(IP) et d'attribution (AU) de 
« Ralp ». Les accès aux routines 
des lignes 85, 210 et 220 se font 
respectivement par des groupes 
de deux lignes 30/40, 100/110 
et 300/310. 

Les couples ont la forme : 
LET N = « numéro de ligne » 
GOSUB AU 
et sont équivalentes à une ins-
truction du type : 
GOSUB « USR de la ligne n°... » 

Entrée d'une routine 
en code machine 

Dans le programme de dé-
monstration, les lignes 85, 210 
et 220 ont sept positions réser-
vées, après l'instruction REM, 
afin de contenir des routines en 
code machine. Pour introduire 
dans ces lignes des octets signi-
ficatifs, il suffit, après l'entrée  

du programme principal, de 
faire pour chaque routine : 
LET IP = 1 
LET N = « re... de ligne 
«REM» » (ici : 85, 210 ou 220) 
GOTO 9952 

Le programme place le ca-
ractère « 1: » en haut à gauche 
de l'écran et nous invite à en-
trer une chaîne de caractères. 

Il faut alors taper le code 
(décimal) du premier octet de 
la routine (par exemple, 62). 

62 s'inscrit derrière « 1: », et 
« 2: » apparaît. Le deuxième 
octet doit être fourni, et ainsi de 
suite... 

Pour faciliter le contrôle du 

MICRO-SYSTEMES — 335 Septembre 1983 



9eilp REM "RRLP " rECH.A[..P.N 

 

9952 LET RM= -13 +PEEK 15395 +255*P 
EEK 16397 
9954 LET HM = INT (RM.,255) 
9956 LET LM =RM -255 *HM 
9962 POKE RM +9 LM 
9954 POKE RM +10 HM 
9966 POKE 15394.;  N -2$5 *INT (N,255 

9958 POKE 16395;  INT (N "255 ) 
9970 RAND USR R14+2 
9972 LET N=5 +PEEK Re1+258*PEEK (R 
M +1) 
9974 IF IP =1 THEN GOTO 9980 
9976 RAND U5R N 
9978 RETURN 
9980 LET P - P. +PEEK (N-3) +256*PEE 
K ( N-2 ) 
9982 FOR /=1 TO P 
9984 PR INT I; " : " 
9956 INPUT. J$ 
998e, IF Ji= 	THEN GOTO 9994. 
9990 IF J " R " THEN GOTO 9993 
9991 LET =1-2. 
9992 GOTO 9984 
9993 POKE N-1+I,UAL J$  
9994- PRINT PEEK ( N -1 +I ) 
9995 NEXT I 
9996 LET IP =0 
9997 PRINT 
9998 LIST PEEK 16394 +256 *PEEK 16 
395 
9999 REM 	Cil:Mt:0LN * 44.6 TRN 

80 PRINT -RESULTRT 1ER USER-
85 REM Y*NOT YONOT TRN 
c:z:•FOR 1=1  TO 50 
95 NEXT 
100 LET N=210 
110 G05U3 RU 
•20 PRINT 

PRINT "RESULTRT 2EHE USER" 
140 GOTO 300 
210 REM.Y1e4OT YeNOT TRN 
220 REM YMNnT YEINOT TAN 

LET N=220 

Fig. 7. - Liste du programme de démonstration après création des trois 
routines en langage machine. 

Liste des variables 
RM Adresse du sous-programme de recherche de la routine 

en langage machine. 
N Numéro de ligne contenant la routine, puis adresse de 

cette routine. 
IP Aiguillage de fonction. La valeur 0 provoque l'exécu-

tion des lignes (9974 à 9978) qui assurent l'appel à la 
routine en langage machine. La valeur 1 entraîne l'édi-
tion de la routine - lignes (9980) à (9988) - (fig. 6 et 
7). 

P Nombre d'octets réservés dans l'instruction REM pour 
la routine. 

I 	Numéro courant de l'octet en cours d'édition. 
J$ Valeur lue au clavier pour l'éditeur. Toute valeur nu-

mérique provoque l'entrée en mémoire du code décimal 
dans l'octet I. Un caractère alphabétique équivaut à un 
retour d'un octet en arrière, tandis qu'une chaîne vide 
correspond à l'avance d'un octet. 

cc 

a 
cc 
a 

Fig. 3. - Liste du sous-programme Ralp. 

ROUTINE PRINCIPALE 199991 12 octets après REM 

I 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 	12 

1111111111111•1111 
Le l'" ocrer est a I adresse 

Fig. 4. - Détail de la routine principale de Ralp, ligne (9999). 

11liste Assembleur Signification 

LD HL, (16394) Chargement  de HL  avec le numéro de ligne 
déposé dans IE-PPCI 

CALL 2520 Appel de la routine ROM du ZX 81 « re-
cherche de l'adresse d'une ligne » 

LD (RM), HL Transfert de l'adresse restituée par la rou-
tine en 11711 , IRM1+1 

RET Retour au sous-programme Ralp 

Fig. S. - Liste Assembleur de la routine de recherche d'adresse. 

1: 	filk.2. • 2: 8 
3 : 215 	 4 : 62 
5: 6 	 6: 215 
7: 201 
2 ieigREm VINGT YONOT TAN 
220 REM 1234.587 
300 LET N=220 
310 G05138 AU 
320 PR INT 

Fig. 6. - Liste générée après création de la routine dans la ligne (210). 

336 - MICRO-SYSTEMES 

travail, l'écran affichera, à la 
suite du dernier octet, le listing 
du programme principal à par-
tir du numéro de la ligne qui 
vient d'être traitée. 

Afin de faciliter le charge-
ment, il est possible de se dépla-
cer en avant et en arrière du 
numéro d'octet pointé, dans 
l'espace réservé. 

Le retour en arrière «- s'ef-
fectue en entrant un caractère 
alphabétique au lieu d'un nom-
bre. 

Le saut en avant -• se fait 
simplement sans rien entrer : 
les octets « sautés » ne sont pas 
modifiés. Par exemple, au cours 
du chargement de la ligne 85, 
les cinq premiers octets sont 
chargés ; l'écran affiche « 6: », 
la machine attend donc le 
sixième code. 

Pour modifier le troisième, il 
suffit d'entrer une lettre puis de 
taper « New Line » et recom-
mencer l'opération jusqu'à l'ap-
parition de « 3: » ; le troisième 
octet peut être modifié. L'écran 
affiche alors « 4: ». 

Pour revenir au sixième 
octet, il faut appuyer sur « New 
Line » jusqu'à l'apparition de 
« 6: » sur l'écran. 

Dans la description qui suit,  

nous avons représenté les numé-
ros des lignes du sous-pro-
gramme « Ralp » (fig. 3) entre 
parenthèses - (nnn) - et les va-
riables employées sont enca-
drées - IVARI 

Recherche de l'adresse 
du sous-programme 
(9952 à 9972 + 9999) 

En premier lieu, le sous-pro-
gràmme Ralp recherche 
l'adresse mémoire de l'instruc-
tion REM contenant la routine 
à traiter. Ce traitement est ef-
fectué par la routine en langage 
machine stockée dans la ligne 
(9999) (fig. 4). 

Pour cette partie du traite-
ment, la variable Test fournie 
au sous-programme Ralp 
chargé avec le numéro de la 
ligne recherchée. Ce numéro est 
déposé dans la variable système 
I  E-PPC1  aux adresses 16394/ 
16395. La variable IRMI  
contient l'adresse mémoire du 
premier octet suivant le code de 
l'instruction REM, ligne 
(9999). 

La  routine débute à l'adresse 
IRMI+2 et la liste des instruc-
tions le composant est détaillée 
figure 5. 

Ensuite la variable IN( est 
actualisée avec l'adresse de la 
routine cherchée. ■ 

Septembre 1983 

9999 RFM 

Code ideco-nall 


